Telegram Group & Telegram Channel
Перечислите гиперапараметры, которые можно настроить у классического многослойного перцептрона

▪️Количество скрытых слоёв
Это напрямую влияет на сложность модели. Большее количество слоёв может улучшить способность модели к изучению сложных зависимостей, но это также увеличивает риск переобучения.

▪️Количество нейронов в каждом слое
Чем больше нейронов, тем больше информации может обрабатываться, но это также увеличивает количество параметров, которые необходимо обучить.

▪️Функция активации
Можно использовать, например, ReLU.

▪️Скорость обучения (learning rate)
Один из ключевых гиперпараметров, определяющий, насколько быстро обновляются веса на каждом шаге обучения.

▪️Число эпох (epochs)
Определяет, сколько раз модель пройдёт по всему набору данных во время обучения.

▪️Размер батча (batch size)
Определяет, сколько примеров из обучающего набора данных используется для обновления весов за один раз.

▪️Оптимизатор
Классические MLP могут использовать такие оптимизаторы, как Stochastic Gradient Descent (SGD) или более продвинутые, например, Adam или RMSprop.

#глубокое_обучение



tg-me.com/ds_interview_lib/647
Create:
Last Update:

Перечислите гиперапараметры, которые можно настроить у классического многослойного перцептрона

▪️Количество скрытых слоёв
Это напрямую влияет на сложность модели. Большее количество слоёв может улучшить способность модели к изучению сложных зависимостей, но это также увеличивает риск переобучения.

▪️Количество нейронов в каждом слое
Чем больше нейронов, тем больше информации может обрабатываться, но это также увеличивает количество параметров, которые необходимо обучить.

▪️Функция активации
Можно использовать, например, ReLU.

▪️Скорость обучения (learning rate)
Один из ключевых гиперпараметров, определяющий, насколько быстро обновляются веса на каждом шаге обучения.

▪️Число эпох (epochs)
Определяет, сколько раз модель пройдёт по всему набору данных во время обучения.

▪️Размер батча (batch size)
Определяет, сколько примеров из обучающего набора данных используется для обновления весов за один раз.

▪️Оптимизатор
Классические MLP могут использовать такие оптимизаторы, как Stochastic Gradient Descent (SGD) или более продвинутые, например, Adam или RMSprop.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/647

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA